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1 Introduction

Online  Social  Networks  (OSNs)  have  become the  main  channel  to  interact  with  people.  The
centralized nature of these platforms can be considered the primary problem as concerns the user
privacy exposure.

Decentralized Online Social Networks (DOSNs) have been proposed as a valid alternative to a
centralized solution. Indeed, a DOSN [1] is an Online Social Network implemented on a distributed
information  management  platform,  such  as  a  network  of  trusted  servers,  Peer-to-Peer  (P2P)
systems or an opportunistic network.

During  the  last  years,  DOSNs have  been  the  focus of  several  works  and  projects  from both
academic researchers and open source communities. By decentralizing OSNs, the concept of a
service provider is changed, as there is no single provider but a set of peers that take on and share
the tasks needed to run the system.

Usually,  DOSNs are built  by exploiting  P2P networks.  A P2P Network is  defined in  [2] as “A
distributed network architecture may be called a Peer-to-Peer network, if the participants share a
part of their own hardware resources (processing power, storage capacity, network link capacity,
printers, etc…). These shared resources are necessary to provide the Service and content offered
by the network (e.g. file sharing or shared workspaces for collaboration); they are accessible by
other peers directly, without passing intermediary entities. The participants of such a network are
thus  resource  (Service  and  content)  providers  as  well  as  resource  (Service  and  content)
requestors (Servent-concept).”  Considering the social  nature of  DOSNs,  they are modelled  by
exploiting specific social network models, such as ego networks.

Furthermore, in a DOSN, the temporal dynamics are considered hard challenges, which require
important design choices and specific measures and algorithms in order to better evaluate the real
properties of the network. For this reason, they are usually represented and studied as temporal
networks. Indeed,  all  real networks (online or offline) evolve over time,  either by adding or by
removing  nodes  or  links.  In  a  DOSN  we  can  observe  two  types  of  dynamisms:  social  and
infrastructure. The social dynamism concerns social relationships which can change over time, due
to the variation of relations between users (edge dynamism), and of the number of users of the
DOSN (node dynamism). Indeed, the social network of each user can change by adding or by
removing nodes or links over time. This kind of dynamism is present also in centralized OSNs [3],
but  in  DOSNs  it  has  an  impact  on  the  structure  of  the  underlying  P2P  overlay  because
communication links can be added or removed.

The infrastructure dynamism is related to the structure of the P2P social overlay network. Indeed,
nodes  may  join/leave  the  underlying  network  (node  churn),  causing  the  number  of  available
connections  change  in  terms of  the  number  of  active  links.  Node  churn  is  a  real  problem in
distributed systems, especially in the scenarios where one cannot make assumptions about the
availability and the reliability of the nodes composing the P2P networks. DOSNs, among others
such as Mobile Ad Hoc Networks or Vehicular Ad Hoc Networks, is one of such scenarios. The fact
that nodes may appear and disappear from the network, has side effects on the P2P topology, and
can lead to situations in which the network may also be disconnected,  thus making extremely
difficult even the simplest problems. This kind of problem is even worse if we consider that nodes

3



HELIOS D4.2 (REPORT) 

may abruptly leave the network. This imposes the study of the problem of node churn, mainly in
two directions: its effect on the P2P network, and possible ways to predict it. It is important to study
the effect of node churn to be able to design a system which is able to recover from a situation in
which it caused severe damage to the P2P network, and it is important to be able to predict it such
that a more resilient network topology is created.

The study of churn in P2P networks is not an extremely recent research topic as, given its impact
on the networks, was one of the first problems tackled since the early 2000s. Characterizing churn
in P2P networks is also a very hard task because there are many different applications that can be
built  over these networks and each of them has a different usage pattern from the users. For
instance,  we expect few and long sessions in file  sharing applications  [4] but many and short
sessions in DOSNs [5]. As such, the same application does not necessarily show uniform values.
For instance, as summarized in [6], in Distributed Hash Tables (DHTs) we observe median session
lengths  ranging  from  a  few  minutes  to  up  to  one  hour.  A  comprehensive  study  of  churn  is
presented in  [7],  where  the authors  put  their  effort  in  defining some techniques  to accurately
measure churn mitigating some effects that may affect the results, such as: biased peer selection,
handling brief events, Network Address Translation (NAT), and others. The study is carried out in
terms of inter-arrival  time distribution, session length, and several correlations. The problem of
churn prediction is a well studied one in many fields, from economics [8] to telecommunications [9].
Also, a different number of techniques are used to perform the task, including decision trees [10],
support vector machines and Random forest [11], but also social network analysis [12]. In the field
of P2P networks, we find many works in the area of live video streaming [13–15].

DOSNs, as decentralized networks, are affected by the high infrastructure dynamism mentioned
above and the social network is very shattered and not even close to the static view, as shown in
[16]. Furthermore, the problem of churn can not be faced by exploiting the studies proposed for file
sharing applications [7], because the time spent online is different. As studied in [5], in Facebook,
users have less than 100 daily sessions while the average number of sessions is less than 4.
Furthermore, almost 50% of users’ sessions are usually shorter than 20 minutes, and only in few
cases the session length exceeds the 2 hours.

For this reason, because of its ability to model an evolving network, a dynamic (or temporal) graph
can be used as a model to represent the HELIOS P2P social network. Furthermore, specific design
choices are necessary in order to be able to develop and analyse a DOSN.

HELIOS represents the new generation of decentralized social media platforms that addresses the
dynamic nature of human communications in three dimensions: contextual, spatial and temporal.
HELIOS will introduce novel concepts for social graph creation and management by exploiting trust
and transparency, where the temporal aspect will be a property of the platform, and in particular of
the social graph.

The  rest  of  the  document  describes  the  feasibility  to  model  the  scenario  of  HELIOS using  a
temporal network formalism. We review several formalisms to identify the one that can be better
adapted to our scenario, then we formalize the definitions of the Heterogeneous Social Network
Graph and the Contextual  Ego Network,  given in  D4.1,  Heterogeneous Social  Network Graph
Topology and Lifecycle, in order to include the temporal dimension. After that,  we show some
studies performed in social networks in scenarios which are very close to ours. We conclude the
document by presenting Graph Neural Networks as a model that leverages the Heterogeneous
Social Network Graph’s structural and temporal topology to perform machine learning, as well as a
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promising decentralized formulation of Graph Neural Networks that propagates information through
each user’s Contextual Ego Network.

About this document

This document describes how a DOSN is affected by the time parameter and why. In detail, we
present the main proposals in terms of temporal network models by describing their characteristics
and how they are modelled.  Among all  the  proposals,  we decided  to adopt  the  Time-varying
graphs [17] because they are abstract enough to be implemented as needed, yet they are very
expressive and extensible. In fact, starting from the original formalism, we decided to develop a
new one called  HELIOS time-varying graph which is heavily based on the  Time-varying graphs
with two major modifications. First of all,  we drop all the expressive mechanisms which are not
relevant  or  useful  in  our  scenario,  such that  the formal  model  is  left  only  with  the necessary
elements. This helped in making the formalism even lighter. Besides some minor modifications, we
also needed to introduce a way to model the concept of context to our formalism. To this aim, we
plug in the idea of layer of the Pillar multi-network [18] in the HELIOS time-varying graph.

With this formalism, we are able to redefine the Heterogeneous Social  Network Graph (HSG),
firstly introduced in D4.1 Heterogeneous Social Network Graph Topology and Lifecycle, where now
we also add the temporal dimension to the model. The HSG can be seen as the social overlay of
the whole  platform HELIOS.  The main  goal  of  our  dynamic overlay  is  to  represent  the social
interactions of the HELIOS users by taking into account the dynamics of the decentralized systems
(i.e. infrastructure dynamism).

We discuss that, both for practical reasons and for privacy reasons, we cannot expect that each
user maintains a copy of the whole HSG. Therefore, we introduce a local view of the HSG, which is
a concept much closer to the philosophy of the project. We call this local view the Contextual Ego
Network (CEN). The CEN will be used as social overlay by each node independently, making it
more than a mere stack of ego networks extracted from the HSG. Indeed, each user will build its
own CEN, and each CEN will  be updated by its own user independently.  The Contextual Ego
Network is managed by considering the dynamics of each layer, which represent a specific context
of the user’s daily life.

The document is organized as follows: in section 2 we present the state of the art concerning
temporal networks. In section 3 we formalize the HSG, that is the social overlay of HELIOS, and
the CEN, the local view of the nodes in the HSG. The section ends with some relevent studies that
highlight the importance of studying the social overlay in a temporal fashion. Section 4 presents
some requirements for the library that will be implemented for managing the CEN. In section 5 we
discuss how to employ Graph Neural Networks considering the kind of tasks we have to perform
and the distributed scenario in which the tool will be used. Section 6 concludes the document.
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2 State of the art

In this section the reader is introduced to the concept of the temporal network as a graph model
with the temporal dimension, and all the consequences. We start from a short survey overviewing
some of the most important models proposed in the literature, and then we will choose the one that
fits best our scenario. The section continues with a number of studies about how existing problems
can  be  adapted  to  the  dynamic  case,  and  some  new  problems  which  are  representative  of
temporal networks.

2.1 Temporal Networks

The most natural and used mathematical tool to represent social networks is the graph. In its basic
form, a graph G=(V,E) is defined by a set V of vertices and a set E of edges. An edge is defined as
a pair of vertices e=(u,v), e VxV⊆VxV , for which (u,v) E∈E  means that the nodes u and v are connected
in G. The set V of vertices is used to model the entities, while the set E of edges is used to model
the relations between these entities. In a typical social network, the set  V is used to model the
people and the set E can be used to model a number of different properties, such as interactions,
degree of kinship, friendship and so on. Traditionally, social networks have been modelled using
static  graphs  in  which  nodes  represent  people  and  edges  between  them  represent  a  static
relationship among pairs of people. But static graphs are not able to fully grasp the evolving nature
of human interactions. Consider, for example, the scenario of OSNs, where people can freely add
new friends or they can interact with people with whom they do not have a friendship. In a DOSN
the effect is even more impactful because users may switch their state between online and offline.
This is because in DOSNs the users themselves have to cooperate together to provide the service.
Consider  for  example  the  problem  of  data  availability,  that  is,  making  the  data  of  each  user
available to all other users. One possible solution is to make replicas of the data, such that if a user
is offline, the designated replica can provide the missing data. But then, what if also the designated
replica becomes unavailable? Then even more advanced techniques need to be developed to
cope with such situations. This kind of problem is absent in centralized OSNs, as the central server
is in charge of delivering the service, and the fact that a user may go offline does not hinder the
quality of the service. Moreover, a node going offline in a DOSN, also has side effects on the
structure of the social graph made of online users. Things can get even more complicated in the
world of mobile  and opportunistic social  networks, where people and their  devices are able to
communicate  only  with counterparts  that  are physically  close.  Temporal  networks are suitable
models for DOSNs because they do not consider a static, immutable graph, but instead are able to
model the dynamism of these networks in all of their aspects.

The study of temporal networks is a relatively recent topic in the scientific community, however the
presented  models  are  already  quite  complex  and  some of  them are  able  to  model  arbitrarily
complicated scenarios.

A first model, called  Temporal graph, is presented in  [19] where the authors define the temporal
network as a sequence of successive static networks. Given two nodes of the graph u and v, they
define a contact between nodes u and v at time t, denoted with Ruvt, if an interaction happened at
time t between the two nodes. They then define a time window w as the amount of time passed
between two successive observations of the network. Thanks to these two concepts, they are able
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to build a number of static (but time labeled) networks, each of which represents the state of the
network once per w units of time. Each Gt, which contains information about the network from time
t to time t+w, is made of the same set of nodes V as the static view of the network, and contains an
edge (u,v) if and only if, there has been a contact  Ruvs such that  t≤s≤t+w. The temporal graph is
now formally defined by the authors as the sequence <Gt, Gt+w, … Gt+kw> of each snapshot of the
real network. A graphical representation of this formalism is shown in Figure 2.1. The main focus of
the paper is then to use this formalism to study the temporal distance of the nodes of the network,
that is how much time it takes to reach another node starting from an arbitrary node of the graph.
The strength of this formalism is its simplicity and the fact that the problem they tackle is defined on
a sequence of static graphs, thus enabling the possibility of using existing algorithms to solve the
problem.  A  similar  approach,  called  evolving  graph [20],  removes  the  constraint  that  each
observation is made exactly once every w.

Figure 2.1 A graphical representation of Temporal Graphs taken from [19]. Time is sliced in time
slots, and each slot contains a snapshot.

The model presented above is a very basic one and, in fact, it is not able to capture some more
advanced dynamics. A slightly improved model,  also called  Temporal graph [21] abandons the
concept  of  time window and  snapshots  to  introduce  a  more  granular  model.  The  model  was
originally thought for email exchanges; however, it can be adapted to any kind of interactions, as
long as it can be considered instantaneous. Interactions come in the form (s,d,t), where s denotes
the source of the interaction,  d its destination and  t the time at which the interaction took place.
Even though the model was initially thought for directed interactions, the resulting graph can be
symmetrized such that it becomes undirected. Starting from the list of interactions, a new graph is
built in this way. For each interaction (s,d,t) two nodes are considered: st and dt. These two nodes
represent  the  two actors  s and  d respectively  at  time  t.  Between  these  two nodes,  an  edge
respecting  the  direction  of  the  interaction  is  created.  Once  all  the  interactions  have  been
considered, all the nodes modelling the same entity are linked in a chain fashion using the time
label they appear into. The structure created is once again a graph, but has two kinds of edges: the
edges modelling the interactions and the edges modelling the flow of time (see Figure 2.2). This
model is then used to introduce some topics, such as the notion of proximity. In addition to the
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previous model, this one is able to provide all at once the whole history of the network, but besides
that, it is not much more powerful.

Figure 2.2. A graphical representation of the Temporal Graphs as presented in [21]. There are five
actors in this toy example. Actor A appears only in three specific moments: t1, t2, and t7, therefore

node A appears three times. Horizontal arrows show how much time passes from two consecutive
nodes modelling the same actor. Vertical arrows show that an interaction is happening at a specific

time.

In the literature  we also  find  some formalisms used for  very specific  use cases,  such as the
temporal networks introduced in  [22] which are specifically thought for connectivity problems. In
this model, edges are supposed to have two time labels: a departure time and a larger arrival time.
Thanks to this double label, we can model the fact that interactions may not be instantaneous, but
they have a starting time and a duration. This is most useful to model phenomena like phone calls
or traversing a road network. In any case, if the arrival time is set as the same of the departure
time for an edge, the authors assume that the interaction was instantaneous. To be able to infer
some properties about time respecting paths in this scenario, the authors propose to add to the
original network additional nodes. In detail,  for each edge  (u,v,d,a), where  u and  v are the two
interacting nodes, d is the departure time, and a is the arrival time, a new node w is added. Then,
this new node is connected to u with a time label d, and to v with a time label a. The new node is
therefore used to model the fact that we are waiting for that interaction to end before having the
possibility  to  reach  other  portions  of  the  network.  Thanks  to  this  artifice,  the  study  of  time
respecting paths can be made simpler.

Another domain-specific proposal is the periodically varying graph introduced in [23] in which the
authors focus on modelling trajectories which are repeated over time, such as public transportation
routes, low earth orbiting satellites, security patrols or tourist tours. In this model we have a number
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of sites, which can be visited, modelled as nodes, and a number of carriers, which are the entities
that can visit the sites. Each carrier has a very specific route, defined as an ordered list of sites to
be visited paired with an amount of time that the carrier will stay at each point. Each route defines
a directed graph, and the sum of all the graphs induced by the routes is the so called periodically
varying graph. In the rest of the paper, the authors investigate some different techniques to explore
and infer knowledge over the graph.

Figure 2.3. Figure a shows a graphical representation of an example of a Contact sequence,
Figure b shows an example of graphical representation of an Interval graph [24]. In a contact

sequence the edges are active only at specific time instants, while in an interval graph edges are
active during time spans.

More abstract, general purpose and powerful models are the Contact sequences and the Interval
graphs [24]. A contact sequence is made of a set of vertices which interact with each other at
certain times, and the length of the interactions is negligible. The model is represented via a set of
contacts in the form of (s,d,t), where s and d are the source and the destination of the interaction
respectively,  and  t is  the  time  at  which  the interaction  happens.  The  interval  graph  is  just  a
generalization of the contact sequence,  where the interactions have a duration.  In this case a
contact is represented with a quadruple (s,d,t,δtt), where the first three elements are the same as in
a contact  graph,  and the last  one is  used to model  the length of  the interaction.  A graphical
representation of an example of the two models is presented in Figure 2.3, Figure a for the Contact
sequence and Figure b for the Interval graph.

Stream graphs and Link streams [25] are similar to the interval graphs we presented above, but
they also let us model the possible presence or absence of the nodes on the network. A stream
graph is  defined by a tuple  S=(T,V,W,E),  where  V is  the set  of  nodes of  the graph,  T is  the
temporal domain, W is the set of temporal nodes, and E is the set of temporal edges. The temporal
domain T is the set of valid temporal labels on which the temporal nodes and temporal edges are
defined. The temporal domain can be either discrete or continuous and it is usually identified with

 (the set  of  natural  numbers),  for  the discrete case,  or  ℕ (the set of natural numbers), for the discrete case, or ℝ ℝ+(the set  of  positive  real  numbers,
including 0) for the continuous case. One can also consider intervals of these sets to model events
that are bounded in duration. The set of temporal nodes W TxV⊆VxV  is used to define the time spans
for which nodes are involved in S. A node v is said to be involved in S at time t (t,v) W⇔(t,v)∈W ∈E . Finally,
E TxVxV⊆VxV  is the set of temporal edges which is used to define active edges in S. An edge between
two nodes u and v is active at time t (t,u,v) E⇔(t,v)∈W ∈E . See Figure 2.4 for a graphical representation of a
stream graph and a link stream.
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Figure 2.4. A graphical representation of examples of Stream graphs (left) and of Link streams
(right) [25]. The dotted horizontal lines are used to denote when a node is available. In a Link

stream (right) all nodes alre always avaiable, while in a Stream graph some nodes are available
only during specific time spans. Vertical bold lines denote that an edge is becoming active, and the
horizontal bold line is used to represent the time span it stays active. In a Stream graph, an edge

may be active only if both ends of the edge are active.

Even more generic are the  Time-varying graphs (TVG) [17], which are presented as a powerful
and abstract framework, capable of modelling all the previous proposals. In its most generic form,
a Time-varying graph  G=(V,E,L,T,ρ,ζ,ψ,φ) is made of several elements.  V is the set of vertices,
which yet again are used to model the actors of the system. L is the set of domain-specific labels
which can be assigned to the edges, and can be used to represent any possible information: from
the strength of a tie using a real number to a string that describes the kind of relationship between
the two actors.  E=VxVxL is the set of labeled edges between the nodes. Note that this kind of
notation enables the presence of multiple edges between the same pair of nodes, as long as the
label changes.  T is called the lifetime of the system and can be understood as the span of time
within which the relations happen. Most of the time, one can use the set of natural numbers  ifℕ (the set of natural numbers), for the discrete case, or ℝ
the time is discretized, or the set of real numbers ℝ+ if the time is continuous. The dynamics of the
system are modelled using the four functions. The function ρ, called the presence function, is used
to model the presence and absence of  the edges on the network, while  the function  ζ,  called
latency function, is used to model the amount of time required to cross the edge. More formally,
ρ:ExT→{1,0}ExT→{1,0} and ρ(e,t)=1 means that the edge e is available at time t, while if  ρ(e,t)=0 then the
edge  e is not available at time  t. The latency function can be formally defined as  ζ:ExT→{1,0}ExT→T and
ζ(e,td)=tc meaning that if we start crossing the edge e at time td, we need tc amount of time to reach
the destination node of the edge. The functions ψ and φ are the counterparts of the presence and
latency functions respectively for the nodes. Formally,  ψ:ExT→{1,0}VxT→{1,0} and  ψ(v,t)=1 represent that
the node  v is available at time  t, but if  ψ(v,t)=0 then the node  v is not available at time  t, while
φ:ExT→{1,0}VxT→T and φ(v,td)=tc means that if we reach the node v at time td, we need tc amount of time to
be able to move from that  node.  As we can see,  both the presence function and the latency
function (and their counterparts for the nodes) do not only take as input an edge, but also a time.
This lets us model the fact that edges may be present or absent throughout time, but also the fact
that their latency may vary over time.

Table 2.1 summarises the various formalisms, pointing out their main features: the possibility to
model a discrete or continuous time, the possibility of having dynamic labels, and the possibility to
model latencies on nodes and edges.
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Formalism name Time
Dynamics of

labels
Latency of

nodes
Latency of

edges

Temporal graph [19] Discrete no no no

Evolving graph [20] Discrete no no no

Temporal graph [21] Discrete no no no

Temporal  networks

[22]
Discrete no no yes

Periodically  varying

graph [23]
Discrete no no no

Contact  sequence  /

Interval graph [24]
Discrete no no

no/

yes

Stream graph /

Link stream [25]
Discrete or Continuous no no no

Time-varying  graph

[26]
Discrete or Continuous yes yes yes

Table 2.1 Relevant properties of the various formalisms presented.

2.2 Storing techniques

Storing a complex structure such as a temporal network requires some expedient and, in some
cases, very specific data structures. In the following, we briefly discuss some of the techniques
already present in the literature. However, we immediately point out that there is no technique that
works better than all the others in every case: each different scenario requires that the various
possibilities are analysed, and a proper technique is selected afterwards.

A pretty straightforward technique is to discretize time and then build separate snapshots of the
temporal graph, and to store the snapshots separately. In this way, each snapshot can be treated
as a single graph, allowing storing techniques for static graphs to be used, such as an edge list,
adjacency list or adjacency matrix. In the same scenario, more complex structures exist, such as
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interval trees [26] and segment trees [27], which aim to store segments of the graph evolution in a
tree structure for query efficiency reasons.

In  [28] the  authors identify  two main  techniques  for  storing  temporal  data,  namely  the “copy”
approach and the “log”  approach.  The two approaches are opposite  to each other.  The copy
approach is a generalization of the one presented above and consists of storing a copy of the
whole  graph  each  time  it  is  needed,  possibly  once  every  time  the  graph  changes.  It  is  a
generalization in the sense that it does not slice time in fixed length portions, but it rather decides
certain points in time when to store the network. The copy approach has as a downside the fact
that most of the data is possibly redundant, and therefore requires a lot of space. To overcome this
issue, the log approach aims at minimizing the redundant information by storing only the changes
that  happen  in  the  graph.  This  approach  works  very  well  if  the  changes  on  the network  are
extremely frequent, because only the part of the network that has changed will  be stored. The
technique also works much better if we are interested in limiting our studies in very small time
spans, discarding the history of the network. However, this technique lacks an efficient way to
rebuild the network at a given point in time, because it requires to read all the history up to that
point. However, one can consider using a hybrid technique which uses the copy technique to build
few “checkpoints” of the network that will be stored, and then use the log technique to store the
evolution between these checkpoints.

2.3 Temporal network problems

In this  section,  we present  several extensions of  network problems in temporal  scenarios that
demonstrate the complexity and many variants that arise when we add a temporal dimension to
graphs. To give a first insight, we will show the temporal equivalent of a well-known problem of
graph theory: the shortest path. The problem of finding the shortest paths is a very basic and
simple one and for this reason it is suitable for our aim. Moreover it can be used as a starting point
to define more advanced problems, such as eccentricity and diameter,  path based centralities
(betweenness,  closeness  and  harmonic),  and  even  some  community  detection  approaches.
Additionally,  we also show how to adapt  more complex applications:  community detection and
motif detection.

2.3.1 Shortest paths and Journeys

Given a static graph, modelled as G=(V,E), where V is the set of the entities modelled, and E is the
set of relationships among them, we can define the so-called paths. A path P from u V∈E  to v V∈E  of
length  k is a sorted sequence of edges P={(u0 ,v0), (u1 ,v1), … , (uk ,vk)}, with   ∀ 0≤i≤k. (ui,vi) E∈E ,
such that u0=u, vk=v, and  ∀ 0< i≤ k. ui = vi-1. In this static case, the length of a path can be defined
as the number of edges composing the path. A path  P of length  k from u to  v is said to be the
shortest if  there is no other path from  u to  v with length  l<k.  In an undirected and unweighted
network, shortest paths can be found using a simple breadth-first [29] search from the source node
u of the graph.

Things change dramatically when we have to include the temporal dimension in the problem. In
this section we consider a simplified version of the problem, where edges may be traversed only
during specific time spans.  In particular,  we will  consider that  nodes are always available and
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visible, although they may be isolated or not connected to a portion of the graph at a given time,
and that nodes and edges have no latencies. For this goal, we consider a temporal network using
the Time-varying Graph (TVG) formalism, introduced earlier in this section, as G=(V,E,T,ρ), where
V is the set of nodes,  T the temporal domain,  E the set of edges, and  ρ is the edge presence
function. The notion of path on temporal networks is called journey, and the journey from node u to
node v at time t can be defined as a sequence of pairs J(u,v,t)={(e1, t1), (e2, t2), …, (ek, tk)}, where
ei∈E is  a  temporal  edge,  and  t T∈E  is  the  time  at  which  the  corresponding  edge  is  crossed.
Moreover it is also requested that  ∀ ei=(ui, vi) ui+1=vi, u1=u, and vk=v, such that the sequence of the
edges actually makes a path from the source node to the destination node,  ∀ 1<i≤k ti>ti-1 such that
the sequence of edges is time-respecting, and finally   ∀ 1≤i≤k  ρ(ei,ti)=1 such that the edges are
available for crossing. A journey is characterised by at least three distances, one topological and
two temporal. A journey J(u,v,t) is said to have length k, because of the number of edges included
in it, the duration is tk-t1, and time to reach equals to tk-t. In this scenario, depending on what we
want to minimize, we have three different versions of the problem: if we minimize the length we find
the shortest journey, if we minimize the duration we find the fastest journey, and if we minimize the
time to reach we find the foremost journey. Even more advanced versions of the problem may be
defined as well. For instance, one may want to find the shortest journey with the constraint that the
time  to  reach  has  to  be  lower  than  a  given  threshold.  Even  more  than  that,  if  we  consider
undirected edges, in the static case if there is a path from node u to node v, there is also a path
from node v to node u. This does not necessarily hold for temporal networks, because it depends
on how the edges appear and disappear.

As we saw in this section, even the simplest of the problems that can be defined on static graphs
becomes very hard in a dynamic scenario, and usually more versions of the same problem can be
defined. Nevertheless, this did not stop nor lessened the effort in defining measures and algorithms
for  studying  temporal  networks.  Instead,  it  led  to  a  proliferation  of  a  very  high  amount  of
independent definitions of the various problems. In the following, some of them which attracted a
lot of interest in the scientific community.

2.3.2 Community Detection

Community structure is a well investigated problem for complex networks in general [30], and the
study of their structure could help to understand several properties of complex networks, including
the ones of OSNs  [31]. The problem of community detection is difficult per se, because it is ill-
posed. In fact, there is no formal and widely accepted definition of a community, but at a high level
it can be identified as the detection of sets of nodes that are closely related to each other, more
than the other nodes of the graph. This problem was thoroughly studied in the literature [31–33].

Unfortunately, studying communities in a static way does not model well the evolving nature of the
world we live in. Just consider, for instance, that human relationships continuously evolve over time
(both  in  a  smooth  or  in  a  disruptive  way),  interactions  are  limited  in  time,  people  switch
continuously their context depending on their physical position and so on. Therefore, since OSNs
are extremely dynamic environments, there is the need of studying communities as time evolves,
which inevitably makes the problem more complex.

Recently, a lot of attention and effort has been placed on the dynamic counterpart of the same
problem [34], [35]. In this case, it is also very hard to find a shared formal definition of the concept
of a community. Intuitively, one can understand a dynamic community as an evolving set of nodes
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which, at a given time, contains the set of nodes which are closely related at that time. Algorithms
for dynamic community detection can be divided into three classes, as presented in  [35]: Instant
Optimal,  Temporal  Trade-off,  and Cross-Time. These types of  algorithms differ  on the type of
information used to determine the community structure at a given time.

In Instant Optimal algorithms, the network evolution is seen as a series of successive snapshots,
each  representing  the  state  of  the  network  at  a  particular  instant  of  time.  Communities  are
identified on each snapshot separately, using static communities detection approaches, and then
matched together to build the complete history of each community. In this approach, communities
existing at time t are discovered by considering only the state of the network at time t.

In  Temporal Trade-off algorithms, the communities identified at  time t  are computed using the
current state of the network, at time t, and previous information, possibly up to the initial known
state. Typically, communities are discovered by a two steps process which consists of an initial
bootstrap (with a static community detection algorithm), yielding the existing communities when the
observation starts, followed by an iterative procedure that updates these initial communities as the
network evolves.

Finally,  Cross-Time algorithms use  all  available  information,  i.e.  past,  current  and  future  with
respect to time t, to identify communities at the instant t. Generally speaking, such methods find all
the  dynamic  communities  at  once,  instead  of  their  state  at  a  specific  time.  Moreover,  the
communities detected by the algorithms in this class are said to be temporally smoothed over time,
meaning that they tend to produce more stable communities (nodes which are not unequivocally to
be included in a community, are kept out).

2.3.3 Motif Detection

A network motif is a "pattern of interconnections occurring in complex networks at numbers that
are significantly higher than those in randomized networks", as defined in  [36]. In other words,
motifs are small subgraphs, usually made of few nodes, that can be found many times within a
network. Motifs may reflect a specific behaviour of the actors modelled with the nodes of the graph
and their interactions. For this reason, motifs can be understood as building blocks of complex
networks and can uncover local properties of the networks as well as network-wide phenomena.
The detection of motifs is a computationally hard problem because it involves graph isomorphism,
and the computation times become extremely high as the size of the network and of the motif
increases.  In OSNs, the concept  of  motif  can be used to find recurring patterns of  interaction
between users, but it  can be also helpful to understand particular characteristics of the human
behaviour, such as homophily.

Yet, as we already seen, static networks are not well suited for modeling OSNs and accordingly
static  motifs  are  not  the  correct  tools  to  study  human patterns  of  interactions.  Therefore,  the
problem of motif detection also requires a temporal counterpart. A first, simplistic way to study
motifs  in  a  temporal  network  is  to  introduce  a  time  discretization  and  divide  the  network  in
successive snapshots [37]. Then a static motif detection algorithm can be run on each snapshot of
the network separately. In another relevant work [38] temporal motifs are defined as static motifs
with the additional constraint that all the interactions happen within a fixed amount of time, thus
removing the discretization of time. More advanced versions of the problem can also be defined,
as in [39], where the interactions specified in the motif must also happen in a specific order.
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3 Heterogeneous  Social  Network  Graph  and  Contextual  Ego

Network formalizations

Many real-world phenomena we observe in everyday life can be modelled using graph theory.
Traditionally,  static  graphs  (i.e.  graphs  that  do  not  change)  have  been  used  to  model  these
phenomena  because  they  are  expressive  enough  but  not  too  complex.  However,  in  the  last
decades, new models were introduced to add a temporal dimension to the static graphs. This , in
turn, produced more detailed models capable of describing more phenomena and more in detail.
The flourishing of studies in this direction led to the development of a huge number of models,
without having a specific formalism prevailing over the others. For the sake of clarity, we will refer
to such models with the term “dynamic graphs” because of their ability to model a graph that shows
some dynamics, opposed to the “static graphs” which do not change over time. The dynamic graph
models can be focused on modeling the dynamics of the nodes, the dynamics of the edges, or they
can have no specific focus and be expressive enough to model both dynamics. Dynamics of the
nodes consist in considering that the nodes may change their state over time and that they may be
present during a certain time span, but absent in other spans. Dynamics of the edges consist in the
fact that the relation among the entities may evolve and change over time, but also the fact that
some new relations can be established over time, while others disappear.

3.1 Helios Time-varying graph

Having stated the importance of modelling the social graph of a DOSN with a dynamic graph, we
now establish how we can model the Heterogeneous Social Network Graph (HSG) with a temporal
network formalism. Thanks to this overview about the main models for temporal networks found in
the literature, we can now choose a suitable formalism for our scenario. We have decided to adopt
the Time-varying graphs (TVG) [17] because they are abstract, general purpose and extensible. In
particular, we need to adapt the formalism to our scenario, in which users are connected to each
other based on their social ties, and see the relationships evolve over time either because they
change or because users switch their state to online/offline. We will call this formalism HELIOS
time-varying graph (HTVG).

The first change we need to make, concerns how we consider the labels within the edges. We
recall, as defined in D4.1 Heterogeneous Social Network Graph Topology and Lifecycle, that in our
scenario each edge is labeled with the tie strength existing between the two connected users.
However, according to the original formalism of the Time-varying Graphs, an edge e E VxVxL∈E ⊆VxV  is
identified  as  comprising  a  source node,  a  destination  node  and  a  label.  Now,  if  we  use  this
formalism as it is, for each value of tie strength, we would have a different edge. To simplify the
formalism, and make it a bit closer to our scenario, we simplify the formalism and decouple the
edge from its label. So, in the HTVG an edge e E VxV∈E ⊆VxV  is identified by its source node and its
destination  node.  In  addition  to  that,  we still  maintain  the labels  on the edges,  although in  a
different form. Each edge will have an assigned label, but as long as the source and destination
nodes of two edges match, we will consider the two edges as being the same edge. Since we will
consider the labels as values attached to the edges, instead of having a set of labels L, we will
consider having a labelling function. The labelling function λ of the HTVG is defined as λ:ExT→{1,0}ExT→ℝ+

meaning that λ(e,t) will return the tie strength of edge e at time t. Thanks to these adjustments, we
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are able to model the fact that each pair of connected nodes has an associated tie strength that
can change as the system evolves.

The other major change we have to make, is the one that lets us model the possibility for each
user to have the so-called contexts. As we introduced in D4.1, Heterogeneous Social  Network
Graph Topology and Lifecycle, we use the concept multilayer network and, in particular, we will try
to express the concept of the layer using a formalism similar to the one of Time-varying graphs. As
each layer can be modelled using a graph, we will not make changes to the existing formalism.
However, to model the various layers, we will consider the whole network as a collection of layers,
and we will add some mechanism to identify nodes in different layers which model the same user.
To  cope  with  the  need  of  this  identification  mechanism,  we  introduce  a  new  function
τ:ExT→{1,0}VxN→V { }⋃{⊥} ⊥}  which we call translation function, which is a concept similar to the Node mapping
[18]. In detail, τi(u,j)=v means that the node u in layer i and the node v in layer j represent the same
user. The symbol , also called “bottom”, can be used to model the possibility  that a node is⊥, also called “bottom”, can be used to model the possibility that a node is
present in a layer, but not in every layer. We say that τi(u,j)=⊥} if and only if node u is not present in
layer j, therefore it cannot be translated into an actual node. Each layer will have its own translation
function, which, given a node, can find the corresponding node in each other layer.

3.2 Heterogeneous Social Network Graph formalization

At this point, using the HTVG, we take the definition of HSG given in D4.1, Heterogeneous Social
Network Graph Topology and Lifecycle, and try to formalize it. The HSG H=(V,E,L,T,ρ,ψ,λ), where
V is the set of users in HELIOS, E is the set of relationships, L is the set of possible labels which in
our scenario is the set of positive real numbers used to keep track of the tie strength between two
users, T is the temporal domain, ρ and ψ are respectively the presence functions of the edges and
nodes, and λ is the tie strength function. We dropped the edge and node latency functions ζ and φ,
as we find no use for them in our scenario.

As we introduced in D4.1, Heterogeneous Social Network Graph Topology and Lifecycle, HELIOS
considers a set of heterogeneous actors, which can be for instance people or smart objects, and
the connections between such actors. The connections have a different nature and meaning that
depends on the two actors involved. To model such a graph, we implement the Social Overlay with
a Heterogeneous Social Network Graph. In the HSG, the nodes model the actors, such as people,
smart objects and so on, and the edges model the (attributed) relationship among the actors.

3.3 Contextual Ego Network Formalization

Handling  the HSG in  a P2P environment  such as the one of  the  DOSNs is  a real  challenge
because there is no central server which stores the whole graph and we cannot expect each peer
to store a copy as well. At the same time, we want to be able to have sufficient information in each
peer such that the study of the graph can be helpful. Moreover, when talking about the data of the
people, we also have to be sure that data cannot easily be propagated in the network to avoid
privacy disclosures.

The HSG represents the Social Overlay Network of HELIOS. A Social Overlay is a logical overlay
in which peers are connected to known peers and the meaning of an edge between two nodes is a
social relation between them. In general, each node of a P2P network has a local view where only
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a subset of nodes of the entire network are stored. In a DOSN, the local view of a node contains
the friend nodes. However, each node cannot maintain a copy of the whole HSG, because it would
be too big and it would disclose personal information of the users.

To overcome these problems, we need a distributed management of the social  overlay, where
each  user  stores  just  a  small  portion,  possibly  a  portion  that  is  relevant  to  itself.  A  possible
approach is  to  a  more local  social  overlay,  such as  the Ego  Network  (Figure  3.1).  The  Ego
Network is a social network model widely used in literature to model the local view of the users in a
DOSN. The Ego Network of a user is a structure built around the user itself, commonly called Ego,
which contains her/his direct friends, called alters, and it also includes the connections ego-alters
and alters-alters. Thanks to this social overlay, each user can only maintain information regarding
its direct friends, making it viable for our scenario.

Figure 3.1: An example of ego network. The ego, represented with a red node, is connected to all
the alters, represented with a blue node. In the ego network, besides the trivial relationship

between ego and alter, there are also the relationship between the alters.

However, a plain and simple Ego Network cannot be used because it lacks two major concepts
which are crucial to our scenario: the temporal aspect and the concept of context. To this aim, we
take  the  concept  of  Contextual  Ego  Network  (CEN)  defined  in  D4.1,  Heterogeneous  Social
Network Graph Topology and Lifecycle, as it captures all the aspects we want to include. We will
now formalize the CEN using the HTVG. The CEN of a node  u CENu={(Cu

1, τu
1) … (Cu

n, τu
n)}  is

made of n layers, which model the various life contexts of node u. The layers are made by a time
evolving ego network and a translation function. A time evolving ego network can be seen as the
ego network of a user that is capable of change and adapt as the environment around the user
changes. A time evolving ego network of a layer can be formalized with Cu

i=(Vu
i,Eu

i,L,T,ρ,ψ,λ), as a
temporal network with the constraint of it to be the ego network of node u in its i-th context.

Modelling a DOSN with a dynamic network is not only a matter of having a more detailed model at
our disposal, but thanks to it we can perform advanced and more accurate studies which take into
account the time-dependent social overlay. One such study concerns the behaviour of users in the
DOSN in order to address the infrastructure dynamism (node churn).  More studies about  time
evolving ego networks will be presented in the next section.
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3.4 Time evolving ego network: graph properties

The concept  of  ego network has been exploited  in  several  fields for  solving different  kinds of
problems.

For instance, a way to evaluate the betweenness centrality of the nodes of a graph using snowball
sampling was proposed in  [40]. In the work the authors try to show a correlation between the
betweenness centrality  of  nodes and the ego network  betweenness,  namely the betweenness
centrality of nodes in their ego network. While there is no theoretical link between the two rankings,
the results show that there is actually a high correlation.

Another relevant work  [41] employs the concept of ego network betweenness to the problem of
routing in Mobile Ad hoc Networks (MANETs). Since connectivity and reachability is a real problem
in MANETs, the authors propose an approach based on centrality and similarity to evaluate which
is the better  node to which a node must  be forwarded to give it  high probability  to reach the
destination node.

Concerning studies more related to the Online Social Networks scenario, in  [42] the authors, by
restricting  their  study  to the scope of  the ego network of  each user,  detected a not  so trivial
phenomenon. The results suggest that users of Online Social  Network Facebook tend to have
relationships that can be organized in a structure very similar to the one depicted by Dunbar for
offline social networks [43]. An analogous result was obtained for the Twitter Online Social Network
in  [44],  suggesting  that  this  is  a behaviour  common to many of  the most  used Online  Social
Networks.

The literature shows some works that study the dynamic community structure in ego networks. In
[16] a preliminary work about the community structure in ego networks of Online Social Networks
user is presented, while in [45] a comparison between different methods of community detection in
the same scenario is presented. Another relevant contribution  [46] in the same field presents a
protocol and an algorithm for dynamic community detection specifically thought for Decentralized
Online Social Networks.

The concept of ego network was used also in the field of network visualization. In [47] new layouts
for network visualization are developed which are specifically designed for an ego network. The
major novelty introduced is the fact that these layouts take into account the temporal information
and use it to build the visualization. A successive analysis on some real datasets uncovered the
existence of  some visual  motifs  that  can be used to characterise recurring events  in  the ego
networks.
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4 Handling the Contextual Ego Network

Having defined how the Contextual Ego Network will look like, in a rather abstract way, there is still
the need to define how this object will be handled and updated by each user. We will spend this
entire section stating which are the functionalities and mechanisms that are needed, and debating
some possible extensions. This is not meant to be an exhaustive or a definitive version of the APIs
of the library which will  be developed for managing the Contextual Ego Network, but rather an
initial sketch, with some requirements emerged from this document.

4.1 Managing the Layers

We recall that we formalized the Contextual Ego Network of user u in section 3 as CENu={(Cu
1, τ1)

… (Cu
n, τn)}, where Cu

i models the i-th context of user u, and τi is the translation function for the i-th
context: a function that, given a node u in the i-th layer, is able to return the correspondent node in
the other layers. Clearly, the layers of users are not static objects, and therefore they need to be
manipulated accordingly. In particular, we foresee the need of mechanisms to create and modify
the layers and its components.

For what concerns the creation, we need a function for creating a new context and a function for
destroying a context:

Method name Short description

createLayer(Cu
n, τn)

create a new layer for node u using the specified context
and translation function

deleteLayer(i) delete the i-th layer

Moreover, some specific functions to store and load layers from memory:

Method name Short description

storeContextualEgoNetwork(location) store the current state of the CEN in persistent memory
at the specified location
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loadContextualEgoNetwork(location)
load  a  CEN  from  the  specified  location  in  persistent

memory

storeLayer(i, location)
store the  i-th layer of the CEN to persistent memory at

the specified location

loadLayer(i, location)
load the i-th layer of the CEN from the specified location

in persistent memory

Finally, we also foresee that some methods to access the layers will be needed:

Method name Short description

getContext(i) return a reference to the i-th context such that it can be
modified directly

getTranslationFunction(i) 
return a reference to the i-th translation function such that

it can be modified directly

getLayer(i)
return the  i-th layer of the CEN, namely the  i-th context

and the i-th translation function

setLayerActive(i) set the i-th layer as active

setLayerInactive(i) set the i-th layer as not active

getActiveLayer() returns the only active layer at the present time

4.2 Managing the Contexts

Also the contexts should be objects capable of changing and evolving as the users live their lives.
We recall that we defined the i-th context of user u as Cu

i=(Vu
i,Eu

i,L,T,ρ,ψ,λ), where Vu
i is the set

20



HELIOS D4.2 (REPORT) 

made of  u and all  its neighbours in the  i-th context, and  Eu
i is the set of existing relationships

among them. The main requirements are to keep track of which ones are the nodes and edges in
the context, and which ones are the times at which these nodes and edges available at each time.

Method name Short description

addUser(v) add the user v to the context

addEdge(v,z,l) Add the edge (v,z) to the context with the specified label l

setUserOnline(v) set the user v as online

setUserOffline(v) set the user v as offline

setEdgeLabel(v,z,l) set to l the label of the edge (v,z)

getUsers() return the set of users in the context

getEdges() return the set of edges in the context

hasUser(v) check if the context contains the user v

hasEdge(u,v) check if the edge (u,v) is in the context
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5 Graph Neural Networks

In this section we will  introduce the reader to the framework of Graph Neural Networks, giving
some basic  definitions,  and  then  we  will  discuss  how to  use  the  tool  in  the  scenario  of  the
Contextual Ego Network. We present as example the link prediction task, and finally we discuss a
possible architecture for using Graph Neural Networks in a decentralized scenario.

5.1 Definition

One of  the  goals  of  HELIOS is  to  enrich  the user  experience  through machine  learning.  For
example, suggesting new social interactions to users in which they may be interested in is a well-
known link prediction task [48] that could help enrich the provided social experience.

To perform machine learning tasks for the users of the Decentralized Online Social Network, we
propose leveraging  the information  encapsulated  in  their  previous  interactions.  Our  motivation
comes from the premise that users interacting in a context sometimes pertains to common aspects
of their personality that, in turn, relate to interacting or being interested in interacting with common
third parties in the same context.

An emerging idea for extracting such information from graph structures, such as those of HELIOS,
is to make use of the very popular concept of neural networks. Neural networks is one of the most
prominent areas of research that is in the forefront of state-of-the-art developments in many fields.
Their  success  can  be  attributed  to  the  hardware  and  software  scalability  and  performance
improvements (e.g. GPU computing, NVIDIA’s Tensorflow framework) that have been supporting
them in recent years, and which are starting to be available for mobile platforms (e.g. NVIDIA’s
CodeWorks platform for Android1).

When applied on graphs, Graph Neural Networks (GNNs) are a type of neural network that uses
available  relational  information to  extract  high quality  low-dimensional  representations  of  node
features  by  iteratively  propagating  node  information  to  their  graph  neighbors  until  it  reaches
neighbors sufficiently many hops away. These representations can then be input to other machine
learning models or, more commonly, be integrated in a traditional neural network architectures that
perform prediction tasks, such as the previously described link prediction.

One of  the advantages of  deriving representations through information propagation across the
graph is that expressive representations are assigned to nodes with originally little or no available
information,  hence  facilitating  unsupervised  and  semi-supervised  learning.  For  example,  this
process allows  us to perform link  prediction  without  any additional  information  of  known user
attributes (although additional information can certainly improve the predictive ability of GNNs) by
using one-hot encoded user ids as attributes. This scenario is of particular interest to HELIOS,
since social media users are often reluctant to share personal attributes with their platforms, which
means that prediction tasks could target users whose relations are their only originally available
information.  Furthermore,  flexible user modeling means that  users may provide information for
attributes that, even if known, do not help the prediction task too much. For users of either of these

1https://developer.nvidia.com/tools-overview  
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categories, the expressiveness of found representations allows GNNs to still perform high quality
predictions.

For example, in the graph of Figure 6.1 no attributes are known for node E. However, a GNN could
derive low-dimensional representations that are iteratively propagated to graph neighbors. This
way, E’s representation would be greatly influenced by the already similar (in that they both feature
the attribute P) nodes B and C, with which it is linked through 3 (from B) + 4 (from C) = 7 paths in
total. On the other hand, E’s representation would be less similar to D’s, as there exist only 3 paths
to propagate the latter’s representation. Hence, the link CE would be detected as a more likely link
candidate than ED, even if no attributes were initially provided for E.

Figure 6.1. A contextual network where only a few attribute values are known. (Known and

unknown attributes are depicted with filled and empty boxes respectively.)

5.2 Generic GNN Architectures

In Figure 6.2, we show a conceptually simple scheme that was first used to define GNNs [49]. In
this scheme, the parameters of a neural network layer f are trained to produce high quality state
representations  H=f(H,X) that  are  helpful  in  predicting  O=g(H).  Banach's  fixed  point  theorem
ensures that there always exist such state representations that can be found by iteratively applying
f.

Figure 6.2. GNN using an iterative scheme. X,H,O correspond to node features, state

representations of nodes and output predictions respectively

However,  the  iterative  process makes the parameters  of  f difficult  to  train  [50].  To avoid  this
problem, well-known approaches have proposed relaxing Banach’s theorem to approximate f wth a
Multilayer Neural Network (MNN) scheme [51], [52], as demonstrated in Figure 6.3. [52] and [53]
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explain  that  the  common  approach  of  constructing  fN  as  an  aggregation  of  neighborhood
embeddings to pass on to the neural layer can become equivalent to graph isomorphism detection
mechanisms, e.g. when using either average or max pooling of neighborhood features.

Figure 6.3. GNN using a MNN architecture. 

The advantage of GNNs compared to simpler graph mining algorithms, such as random walks [54]
and spectral analysis [55], is that they can inherently express multilayer (e.g. spatial and temporal
as outlined by [56]) network representations and can express non-linear relations.

5.3 GNNs for Link Prediction

Given that  HELIOS users  may behave  differently  in  different  contexts,  we can consider  each
context  to  be  comprised  of  possibly  different  types  of  relations.  We  can  hence  perform  link
prediction using GNN architectures [57] that explicitly acknowledge possible differences between
relations.

Architectures for link prediction usually find k-dimensional representations H[u]∈Eℛk of nodes u that
help score network links  (u,v) in a relation-context through a function g(H[u],H[v],ri) that depends
on context-related parameters ri∈Eℛk. In Table 6.1 we summarize some of the most well-known link
scoring functions [57–60] that can be formulated in this manner.

Approach Link Scoring Function

TransE [58] ||H[u]-H[v]+ri||p

DistMult [59] ⧼H[u],r, H[v]⧽

R-GCN [57] ⧼H[u],r, H[v]⧽

ConvE [60] ⧼H[u],ReLU(1D(ReLU([2D(H[v]) ; 2D(ri)]*ω)W))⧽ω)W))⧽)W))⧽

Table 6.1. Well-known link scoring functions, where ⧼.,.,.⧽is the triple inner product, ⧼.,.⧽the inner

product, and *ωω convolution with a pattern ω.
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To discover node representations, state-of-the-art approaches, such as those presented above,
have been motivated by the success of convolutional neural networks [61] and have been adapted
to graph structures. In particular, in each layer, they perform the graph equivalent of convolutional
operations  by  aggregating  the  previous  representations  of  each  node’s  CEN.  This  way,
representations  Hn+1=fn(Hn) at layers  n+1 become of increasingly higher quality compared to the
ground  truth  features  X=H0,  as  they  encapsulate  more  relational  information  from  the  graph
compared to the previous layer. These types of approaches are a non-linear multilayer equivalent
to neural network that convolves the representations of each layer with spectral graph filters [62].

As mentioned before, a promising architecture that is often adopted in state-of-the-art research[63]
is to find node representations through average pooling of node neighborhoods and then applying
a non-linear activation function  σ(), which is usually the ReLU function  max(0,.). This yields the
following representation at each neural network layer:

where Ci
u is the contextual ego network found on the i layer of node u’s CEN.

5.4 Temporal GNNs

The above formulation of GNNs aims to improve prediction tasks through the structural properties
of graphs. However, the structure of dynamic graphs, such as the Decentralized Online Social
Network, can also change over time. In these cases, exploring the temporal aspect of relations
may  play  a  key  role  in  further  improving  the  quality  of  predictions.  For  example,  a  user’s
preferences may have drifted over time to ones that are better encapsulated by relations they have
more recently formed [64].

To  account  for  the  temporal  aspect  of  systems,  traditional  neural  network  architectures  have
proposed a recurrent type of layer called Long Short-Term Memory (LSTM) [65], [66]. Such layers
use the representations they derived at previous time steps as additional inputs and have been
found to work best with tanh as their activation function. Intuitively, the representations they create
can be considered conditioned to those selected at previous timesteps. Thanks to the promising
results of LSTM layers in modeling the dynamic nature of systems, they have also been adopted to
GNNs  [67].  In  this  domain,  the  LSTM layer  can be  either  fully  connected or  defined  through
convolutions.

Contrary  to  the  above,  it  has  been  argued  that  the  conceptualization  of  dynamic  graphs  as
consecutive graph snapshots allows their dynamic nature to be modelled through nodes that reside
“close” to them from both a structural and a temporal perspective. This train of thought aligns with
the previously discussed applications and defines node neighborhoods to comprise nodes that are
linked within a temporal range [68], [69]. Applying this formulation in GNN architectures is simple,
as it affects only which node neighbors contribute to extracting node representations.

For both types of approaches, modeling the temporal aspect of dynamic graphs has been shown to
greatly enhance the predictive ability of GNNs.
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5.5 Towards a Distributed Architecture for GNNs

Existing GNN implementations are not  designed for  use in  systems similar  to a Decentralized
Online  Social  Network,  where graph structure  knowledge is  distributed across  multiple  nodes-
devices, of which only a few (e.g. those of a CEN) can contribute to the training and prediction
tasks of each node. Instead, their training relies on global synchronization mechanisms across the
graph. This holds true even for optimizations aimed at industrial applications that propagate local
features and limit the number of parameters to be trained [70], [71]. In Figure 6.4 we present the
existing centralized architecture that is required for training GNNs across user devices; devices
need  share  their  data  (including  private  ones)  with  a  central  system  that  is  trained  towards
discovering the optimal parameters of the GNN model. They also rely on this system to perform
and communicate the outcome of prediction tasks, such as suggesting new user interactions.

Figure 6.4. Centralized GNN architecture.

To  address  this  shortcoming,  we  propose  a  GNN  architecture  based  on  federated  learning
principles [72], [73] to train local models on HELIOS devices without explicitly accessing the data of
users outside the Contextual Ego Network. In particular, we propose learning models of different
devices by sharing only their own update parameters (e.g. an updated model or model gradients)
to their ego network’s neighbors. This way, each device is responsible for creating and maintaining
its own approximation of the GNN by utilizing only the information retrievable from its neighbors,
maintaining the privacy of the latter’s nodes.

In short, each user’s approximation is improved using the approximations found in their contextual
ego network, as shown in Figure 6.5. If the network of users is well-connected, local GNNs will
eventually  converge  to  the  same  global  GNN.  On the  other  hand,  if  the  network  is  sparsely
connected,  this  setting emphasises local  structural  characteristics of  the network.  The outlined
model differs from federated learning in that there does not explicitly exist a central architecture to
be updated; instead each device sees itself as the target of its ego network’s learning task.

This setting is similar  to training techniques for distributed agents  [74],  [75] whose behavior  is
driven by adapting neural network architectures [76]. The main difference of our approach is that,
instead of  training towards optimizing a domain objective,  we focus on learning which context
characteristics can best suggest  the links of the ego network. To this end, we aim to adapt a
scheme that uses the propagation mechanism of personalized PageRank for neural architectures
[77] so that it can be applied on a distributed system.
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Figure 6.5. Distributed GNN architecture.

Potential Challenges

There are several challenges to overcome in order for the above distributed conceptualization of
GNNs  to  work.  These  challenges  arise  from  practical  constraints  that  could  arise  during  the
practical deployment of our architecture and will be investigated in later deliverables.

• Firstly, the rate at which devices communicate may not yield fast enough convergence of
the GNNs model into meaningful results.

• Furthermore, devices store and share only data pertaining to their contextual ego network.
However, node representations are, by their nature, anonymized and additional steps could
be needed to align them between GNNs of different devices, especially if they previously
had little or no overlap between their ego networks.

• Finally, we mentioned that relational GNNs rely on context-related parameters to perform
link prediction. However, contexts are unique to each user (i.e. different users may have
assigned  different  contexts  to  the  same  type  of  interaction),  which  allows  sharing  of
parameters  only  in  the  context  in  which  the  devices  interact  at  each  time.  This  may
influence the predictive ability of GNNs, as only a small subset of relational information is
propagated through the Decentralized Online Social Network.
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6 Conclusions

This  deliverable  (named D4.2  “Define  a  time-dependent  social  graph”)  discussed  the  need  to
model the P2P Social Overlay of HELIOS introducing a temporal dimension. We described several
temporal graph formalism and adapted one to formalize the Heterogeneous Social Network Graph
and the Contextual Ego Network with a temporal graph. We also discussed how to apply GNN for
the study and prediction in the Contextual Ego Network.

In this deliverable we studied a number of different temporal graph formalisms trying to understand
their expressiveness and abstractness. This was needed to choose the best formalism that adapts
best in our scenario, but also to find a formalism easily extensible. After deciding that the Time-
varying graph is the best one for our scenario, we decided to apply some minor modifications to
the formalism to model our scenario in a more natural way, thus developing our own formalism
which  we called  HELIOS time-varying  graph.  We also  introduced  an  extension  to  the  vanilla
formalism, which is able to model graphs where nodes can be organized in separate layers.

Using this  formalism,  we propos a formalization  of  the Heterogeneous Social  Network  Graph,
which  includes  the  possibility  that  the  Social  Overlay  evolves  over  time.  However,  it  is
unreasonable, but also against the idea to not have privacy disclosures, that all peers maintain the
whole Heterogeneous Social Network Graph. The Contextual Ego Network, that was previously
introduced as the local view of each node of the whole Heterogeneous Social Network Graph, is
here formalized.  A Contextual Ego Network is a multi-layer graph, where each layer models a
context and is implemented with a time evolving ego network

We also discussed the importance of studying the Contextual Ego Network for different reasons:
from understanding the human behaviour to develop a more intelligent system, to study the node
churn to minimize the effect on the P2P overlay. We also studied the employment of Graph Neural
Networks  within  the  Contextual  Ego  Network  as  its  application  can  help  in  several  tasks,  for
instance  link  prediction.  Finally,  we  also  discuss  a  possible  distributed  architecture  for  Graph
Neural Networks in which federated learning techniques are used to train local models,  and a
wisdom of the crowd is built within each ego network.
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