Barbara Guidi, Andrea Michienzi, Andrea De Salve & Laura Ricci
Università di Pisa, Italy
Knowledge and Information Systems 63, 1339-1364 (2021)
Abstract:
In the last decades, temporal networks played a key role in modelling, understanding, and analysing the properties of dynamic systems where individuals and events vary in time. Of paramount importance is the representation and the analysis of Social Media, in particular Social Networks and Online Communities, through temporal networks, due to their intrinsic dynamism (social ties, online/offline status, users’ interactions, etc..). The identification of recurrent patterns in Online Communities, and in detail in Online Social Groups, is an important challenge which can reveal information concerning the structure of the social network, but also patterns of interactions, trending topics, and so on. Different works have already investigated the pattern detection in several scenarios by focusing mainly on identifying the occurrences of fixed and well known motifs (mostly, triads) or more flexible subgraphs. In this paper, we present the concept on the Incremental Communication Patterns, which is something in-between motifs, from which they inherit the meaningfulness of the identified structure, and subgraph, from which they inherit the possibility to be extended as needed. We formally define the Incremental Communication Patterns and exploit them to investigate the interaction patterns occurring in a real dataset consisting of 17 Online Social Groups taken from the list of Facebook groups. The results regarding our experimental analysis uncover interesting aspects of interactions patterns occurring in social groups and reveal that Incremental Communication Patterns are able to capture roles of the users within the groups.
Keywords: Temporal networks, Online Social Networks, Online Social Groups, Communication patterns